Телекоммуникационные технологии

       

Справочные данные по математике


10.20 Справочные данные по математике

Семенов Ю.А. (ГНЦ ИТЭФ)

  Прекрасна благодушная язвительность,

С которой в завихрениях истории

Хохочет бесноватая действительность

Над мудрым разумением теории

  И. Губерман


Приводимые в данном разделе определения вляются "шпаргалкой" на случай, когда вы знаете предмет, но что-то забыли. Для первичного изучения математических основ рекомендую обратиться к серьезным монографиям и учебникам.

Условная вероятность



В теории вероятностей характеристикой связи событий А и B служит условная вероятность P(А|B) события А при условии B, определяемая как P(А|B) = то P(A|B)=1, если же наступление B исключает возможность события А: A*B=0, то P(A|B)=0. Если событие А представляет собой объединение непересекающихся событий A1, A2,…: A =



Пустые множества обозначаются 0.
Множества, дополнительные к открытым множествам топологического пространства Х, называются замкнутыми.
Нормированное пространство Х называется гильбертовым, если определена числовая функция двух переменных х1 и х2, обозначаемая (x1,x2) и называемая скалярным произведением, обладающим следующими свойствами:

  1. (x,x)і 0;


  2. (x,x)=0 тогда и только тогда, когда х=0;


  3. (l 1x1+l2

    x2, x) = l 1(x1,x) + l 2(x2,x);


  4. (x, l 1x1+l2

    x2) = l1(x,x1) + l 2(x,x2)


при любых l1, l2 и x1, x2ОX. Норма x элемента гильбертова пространства Х определяется как x=

Счетно-гильбертово пространство Х называется ядерным, если для любого р найдется такое q и такой ядерный оператор А в гильбертовом пространстве Х со скалярным произведением (х1,x2)=(х1,х2)q, что (х1,x2)p=(Ax1,x2)q.

Действительное число M является верхней границей или нижней границей множества Sy действительных чисел y, если для всех y О Sy соответственно y Ј M или yі M. Множество действительных или комплексных чисел ограничено (имеет абсолютную границу), если верхнюю границу имеет множество абсолютных величин этих чисел; в противном случае множество не ограничено. Каждое непустое множество Sy действительных чисел y, имеющее верхнюю границу, имеет точную верхнюю границу (наименьшую верхнюю границу) sup y, а каждое непустое множество действительных чисел y, имеющее нижнюю границу, имеет точную нижнюю границу (наибольшую нижнюю границу) inf y. Если множество Sy конечно, то его точная верхняя граница sup y необходимо равна наибольшему значению (максимуму) max y, фактически принимаемому числом y в Sy, а точная нижняя граница inf y равна минимуму min y.
Множество называется открытым, если оно состоит только из внутренних точек. Точка P множества называется внутренней для множества S, если P имеет окрестность, целиком содержащуюся в S.

Компакт. Система множеств G называется центрированной, если пересечение конечного числа любых множеств из G не пусто. Замкнутое множество A Н X называется компактом, если всякая центрированная система G его замкнутых подмножеств F имеет непустое пересечение: компактным в Х, если его замыкание F=[A] является компактом.



Гауссовы случайные процессы

Действительная случайная величина x называется гауссовой, если ее характеристическая функция j =j (u) имеет вид





Предельные значения P1, P2,… представляют собой распределение вероятностей: pj есть финальная вероятность находиться в состоянии j; при этом

Pj=

(-?, s))- P(A| =

называется коэффициентом эргодичности марковского процесса x =x (t).

Переходная функция.

Функция P(s,x,t,B) переменных s, tО T, s Ј t и xО E, bО b называется переходной функцией марковского случайного процесса x =x (t) на множестве T в фазовом пространстве (E,B), если эта функция при фиксированных s, tО T и xО E представляет собой распределение вероятностей на s

-алгебре b и при фиксированных s, tО T и BО b является измеримой функцией от x О E.

Стационарные случайные процессы

Стационарный действительный или комплексный случайный процесс x =x (t), рассматриваемый как функция параметра t со значениями в гильбертовом пространстве L2(W) всех действительных или комплексных случайных величин h =h (w), M|h |2<Ґ (со скалярным произведением

(h 1, h2)= M h1

h2),
может быть представлен в виде



В случае непрерывного времени t аналогом такого процесса является так называемый "белый шум" - обобщенный стационарный процесс z = б u, z с вида



(параметр u=u(t) есть бесконечно дифференцируемая функция), где стохастическая мера z = z (d ) такова, что

Mz (D )=0, M|z (D )|2

=t-s при D =(s,t), Mz (D1) z (D2)=0 для любых непересекающихся D1 и D2.

Стационарный процесс x= x(t), Mx(t)=0, называется линейно-регулярным, если

,

где H(s,t) - замкнутая линейная оболочка в пространстве L2(W) значений x(u), s Ј u Ј t.



Стационарный процесс x =x(t) со спектральной мерой F является линейно-регулярным тогда и только тогда, когда F=F( D) абсолютно непрерывна:

F(D) =


а спектральная плотность f=f(l) удовлетворяет условию



(для дискретного t)



(для непрерывного t)

Стационарный процесс x =x(t) линейно-регулярен тогда и только тогда, когда он получается некоторым физически осуществимым линейным преобразованием из процесса z = z(t) с некоррелированными значениями - в случае дискретного t:

x(t) =

и из процесса z =б u, z с "белого шума" - в случае непрерывного t:

x(t) =

Регулярность. Реальные стационарные процессы часто возникают в результате некоторого случайного стационарного возмущения Z = z (t) типа "белого шума". Процесс z = z(t) подвергается некоторому линейному преобразованию и превращается в стационарный процесс x =x(t). Спектральная плотность f= f(l) такого процесса в диапазоне -p Ј l Ј p для целочисленного времени и -Ґ <l <Ґ для непрерывного времени t не может обращаться тождественно в нуль ни на каком интервале: в противном случае стационарный процесс x (t) будет сингулярным, что означает возможность его восстановления лишь на полуоси -Ґ ,t0. Процессы, спектр которых практически сосредоточен в полосе частот -W< l <W, не обладают свойствами сингулярных процессов. С энергетической точки зрения эти процессы имеют ограниченный спектр. Составляющие их гармонические колебания вида Ф(dl )eilt с частотами вне интервала (-W,W) имеют весьма малые энергии, но они существенно влияют на линейный прогноз значений x (t+t) на основе x (s) на временной полуоси sЈt.

Линейные устройства, используемые при решении конкретных задач, должны иметь вполне определенную постоянную времени T (определяет длительность переходных процессов). Это означает, что весовая функция h=h(t) рассматриваемого линейного устройства, связанная с соответствующей передаточной функцией Y =Y(p) равенством


должна удовлетворять требованию h(t)=0 при t>T.
Рассмотрим задачу линейной фильтрации при наличии на входе процесса x =x(t).



Тогда x (t)= z (t) +h(t), где h =h(t) - полезный сигнал, а z(t) - независимый от него стационарный случайный процесс (шум). Линейное устройство должно быть выбрано так, чтобы процесс на входе



с вероятностью, не меньшей 1-d, будет отличаться от математического ожидания a лишь не более чем на



Распределение Эрланга

Рассмотрим систему, которая способна обслуживать m запросов одновременно. Предположим, что имеется m линий и очередной запрос поступает на одну из них, если хотя бы одна из них свободна. В противном случае поступивший запрос будет отвергнут. Поток запросов считается пуассоновским с параметром l0, а время обслуживания запроса (в каждом из каналов) распределено по показательному закону с параметром l, причем запросы обслуживаются независимо друг от друга. Рассмотрим состояния E0, E1,…,Em, где Ek означает, что занято k линий. В частности E0 означает, что система свободна, а Em - система полностью занята. Переход из одного состояния в другое представляет собой марковский процесс, для которого плотности перехода можно описать как:





При t ® Ґ переходные вероятности pij(t) экспоненциально стремятся к своим окончательным значениям Pj, j=0,…,m. Окончательные вероятности Pj могут быть найдены из системы:

-l0P0+lP1=0

l0Pk-1 - (l0+kl)Pk + (k+1)lPk+1 =0 (1Ј k<m)

l0pm-1+ml Pm=0

решение которой имеет вид:



Эти выражения для вероятностей называются формулами (распределением) Эрланга.

Previous:

   UP:

    Next:


Содержание раздела